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Abstract. The results of a muon spin-rotation(µSR) study of single-crystalline U14Au51 in
the paramagnetically and antiferromagnetically (AF) ordered phases are reported. Transverse-
field measurements for the paramagnetic phase reveal four components in theµSR
signal, distinguished by their different Knight shifts, which can be associated with two
crystallographically different sites: a magnetically unique site in thez = 1

2 plane near the
position (0 0 1

2), i.e. between two U3 ions, and a site with a threefold symmetry near the centre
of a triangle formed by three U1 ions, located in thez = 1

2 plane. It appears that the U3 ions
are nearly, but not entirely, non-magnetic also in the paramagnetic phase. The temperature
dependence of the differentµ+ Knight shifts follows a Curie–Weiss law but it involves
significantly different Curie–Weiss temperatures as compared with the bulk susceptibility, which
even show an anisotropy in the hexagonala–b plane. This does not seem to be aµ+-induced
feature but is rather a consequence of selectively monitoring just the magnetic response of the
U1 ions. In the AF state belowTN = 22 K, measurements reveal two different spontaneous
internal magnetic fields which can be traced back to the two different sites, thus confirming the
non-collinear complex AF structure recently found by neutron scattering.

1. Introduction

The hexagonal compound U14Au51 (space groupP6/m) is classified as a moderately heavy-
electron compound (γ ' 300 mJ K−2/mol U) and has been shown by susceptibility, specific
heat and resistivity measurements to undergo a magnetic phase transition at 22 K [1]. In
contrast to other heavy-electron U compounds, U14Au51 is special in that there are three
crystallographically distinct U sites in this crystal, namely the sites 6k, 6j and 2e, labelled
as U1, U2 and U3 respectively. In fact, a first neutron powder diffraction investigation of
the antiferromagnetic (AF) magnetic structure of U14Au51 demonstrated different ordered
magnetic moments associated with the different sites [2]. In particular, no moment was
associated with the U3 ions at the 2e sites. This was explained as arising due to the rather
small distance between two U3 ions along thec-axis which allows for a direct overlap
of the f-electron wave functions and the formation of a non-magnetic spin-singlet state.
Recently a new detailed neutron scattering investigation [3], combining neutron polarimetry
with integrated intensity measurements on a single-crystal sample, implied a much more
complex AF magnetic structure than the one proposed in reference [2]. According to these
new results, the AF magnetic structure is non-collinear and the U moments are confined

0953-8984/98/368059+24$19.50c© 1998 IOP Publishing Ltd 8059



8060 A Schenck et al

Figure 1. (A) A schematic representation of the structure of U14Au51. (B) The arrangement of
the U1 atoms in thez = 1/2 plane and of the U2 atoms in thez = 0 plane. Also shown by
the arrows is the non-collinear antiferromagnetic structure belowTN = 22 K. The length of the
arrows is proportional to the ordered moment value (from reference [3]).

to thea–b plane (in reference [2] it was proposed that the moments are aligned along the
c-axis with zero propagation vector). In agreement with reference [2], no ordered moments
are associated with the U3 ions. The moments at the two sets (U1, U2) of sixfold sites
are arranged hexagonally (e.g. around the(001) axis) with rotations of 60◦ between them
and the two sets are rotated with respect to one another by 50◦ (see figure 1). At the U1
sites the ordered moment forT → 0 K is determined as 2.28(7)µB and at the U2 sites as
1.48(8)µB .

Reference [3] also provides detailed results on the magnetic susceptibility in the
paramagnetic state, summarized in table 1. As can be seen, the paramagnetic Curie–Weiss
temperatures are anisotropic with respect to thec-axis. The susceptibility measurements do
not allow us to determine the individual magnetic response of the different types of U ion.

The rich and by now well understood magnetic structure of U14Au51 renders it a
challenging testing ground for a local probe technique, such as muon spin rotation (µSR).
First, canµSR be used to confirm such a complex magnetic structure and, secondly, is
it sensitive enough to, e.g., distinguish between the structures proposed in references [2]
and [3] thereby removing possible ambiguities which are sometimes encountered in neutron
scattering? Also, is it possible to learn something about the magnetic response of the U
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Table 1. Curie–Weiss parameters. (θ = Curie–Weiss temperature;peff = J (J + 1)gJ .)

Polycrystalline a(b)-axis b∗-axis c-axis

peff 3.32 3.19(5) 3.19 3.12(5)
θ (K) −100 −71(1) −71 −111(1)
Reference [1] [3] [3]

θ ′ (K), site I −57(3)† + 13(2)† −164+37
−53

θ ′ (K), site II + 11.4(2.4)† 11.4† + 26+12
−19†

† These are values for the principal axes of the local susceptibility tensor.

ions at the different sites in the paramagnetic state? And finally, can one study muon-
induced modifications of magnetic properties which, of course, are restricted to the nearest
µ+-neighbours?

As will be discussed below, all three aspects are amenable to investigation by theµSR
technique [4], provided that theµ+-site(s) are known. An important part of the present
work is therefore concerned with the determination of theµ+-sites.

In the following we will first present information on some experimental details
(section 2), then present and discuss the results obtained for the paramagnetic state, leading
to the site determinations (section 3), and those for the AF ordered state, confirming the
neutron diffraction results [3] (section 4), and we will conclude with a general discussion
in section 5.

Table 2. The samples investigated, with demagnetization factors taken from reference [7].

Approximate dimensions Approximate
No x × y × z (in mm) orientation Na (4π) Nb∗ (4π) Nc (4π)

1 6.7× 8× 0.85 a-axis‖ z, c-axis‖ x 0.830 ∼ 0
2 Diameter∼ 8, length∼ 20 c-axis‖ long axis 0.45 0.45 0.10
3 3× 3× 15 c-axis‖ z 0.49 0.49

2. Experimental details

2.1. Samples

All of the single-crystalline samples investigated originated from one rather large single
crystal which was grown by the Czochralski method from spectroscopically pure uranium
and gold melted together in the appropriate proportions. This material had been used before
in the neutron diffraction study of reference [3]. The actual samples used are listed in
table 2 together with some estimated relevant demagnetization factors.

2.2. Spectrometers

All of the µSR measurements were performed at the high-intensity proton accelerator of
the Paul Scherrer Institute (PSI) in Villigen, Switzerland. For a description of theµSR
technique (zero field, transverse field etc), see reference [4]. The transverse-field (TF)
measurements on the paramagnetic phase made use of the General Purpose Spectrometer
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(GPS) on the surfaceµ+-beamlineπM3, using samples No 1 and No 3, and the high-
precision ETH (‘strobo’) instrument in the time-differential mode as well as the General
Purpose Decay (GPD) spectrometer, both on the conventional decay muon beam lineµE1,
using sample No 2. Temperatures could be varied between 4 K (10 K) and 300 K using
a He-flow cryostat (GPS, ‘strobo’) or a closed-cycle refrigerator (GPD). The applied fields
Hext varied from 4 kOe (GPD) to 6 kOe (GPS, ‘strobo’). The ‘strobo’ instrument and the
GPS allow us to rotate the sample around an axis perpendicular toHext . In this way it was
possible to rotateHext in the basala–b plane (samples No 2, No 3) and in thea–c plane
(sample No 1). In the latter case, the geometry of the sample excluded angles betweenHext

and thec-axis smaller than 30◦. In the GPD,Hext was always parallel to thec-axis. The
external field was measured by an NMR magnetometer or directly byµSR by replacing the
U14Au51 sample by a non-magnetic Ag target. The stability of the external field was of the
order of 10–50 ppm, which is negligible compared to the rather large frequency shifts.

The zero-field (ZF) measurements for the ordered phase used exclusively the GPS and
only sample No 1 was investigated.

3. Measurements on the paramagnetic phase

3.1. Some basic considerations

The primary purpose of these measurements was to identify via the temperature and
orientational dependence of theµ+ Knight shift or shifts theµ+-site(s) involved. The
procedure has been described before [5, 6] and we summarize here just a few useful
formulae. As usual, the Knight shiftK is defined as the fractional shift1ν/ν0 of the
precession frequencyν relative to the frequencyν0 in the presence of just the external field
Hext (ν0 = (γµ/2π)Hext ; γµ is the gyromagnetic ratio of theµ+). The shift arises from
the conduction electron spin polarization at theµ+-position resulting in the Fermi contact
hyperfine fieldBc and from the static moments

mf = χfHext (1)

induced by the external field on the U sites, involving the 5f electrons (χf is the relevant
susceptibility tensor), which produce some net dipole fieldBdip at theµ+-site. Neglecting
higher-order contributions,K is given by

K = (Bc +Bdip) ·
Hext

H 2
ext

(2)

and

Bdip =
∑
i

Bdip,i =
∑
i

(
3(mf · ri )ri

r5
i

− mf

r3
i

)
=
∑
i

Adip,imf . (3)

That is,

Bdip = Adipmf = AdipχfHext . (4)

The sum extends over all U neighbours assumed to be magnetically equivalent, inside the
Lorentz sphere (see below), andri is the distance vector between theµ+ and theith U
neighbour.Adip,i andAdip are dipolar coupling tensors with zero trace.Adip is a lattice sum
over all Adip,i inside the Lorentz sphere. It is evident thatAdip is completely determined
by the crystal structure in question and by the assumedµ+-position. If magnetically
inequivalent but crystallographically equivalent positions are involved, differentAdip will
result, but they can be transformed into each other by proper symmetry operations. In
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this case the Knight shift will split into different values, i.e. several distinct precession
frequencies will show up. An experimental determination ofAdip and its symmetry
properties will then allow us to identify theµ+-position, usually unambiguously.

The conduction electron spin polarization at theµ+-position is dominated by the induced
momentsmf via the RKKY exchange mechanism. Hence we may write

Bc = A0mf = A0χfHext . (5)

A0 is the contact coupling constant. A small additional contributionBs is caused by the
Pauli spin paramagnetism of the conduction electrons:Bs = AsχsHext , whereχs is the
isotropic and temperature-independent Pauli spin susceptibility. Equation (2) can now be
written as

K = 1

H 2
ext

Hext (A0χf + Adipχf )Hext +Ks (6)

where Ks = Asχs is the Pauli contribution. The susceptibility tensorχf in equ-
ations (1), (4), (5) and (6) is understood to be an atomic susceptibility (emu/U ion). If
all U ions were to carry the sameχf , it could be related to the measured bulk susceptibility
by

χb = NAχf (emu/mol U) (7)

whereNA is Avogadro’s number (we neglect here the small contribution ofχs). The above
assumption is questionable in view of the presence of three magnetically inequivalent U
ions. More appropriately we should write

χb =
1

14
NA(6χU1+ 6χU2+ 2χU3) (emu/mol U) (8)

and equations (4), (5) and (6) have then to be modified accordingly. The measured bulk
susceptibility is well described by a Curie–Weiss law down to nearlyTN (see table 1). The
Curie constantC and the effective momentpeff are derived by assuming thatC andpeff ,
respectively, are the same for all U ions. Assuming thatpeff = 0 for the U3 ions, the U1
and U2 ions together would show an averagepeff which is larger by 8% than the values
in table 1 and would shift the values closer to the Hund’s rule values of 3.58 and 3.62
for U3+ and U4+, respectively. However, this is not a sufficient argument in favour of
peff (U3) = 0.

Directing the external field along one of the principal axes of the susceptibility tensor
(a, b∗, c) equation (6) may be rewritten as follows:

Ka = (A0+ Adipaa )χa +Ks
Kb∗ = (A0+ Adipb∗b∗)χb∗ +Ks
Kc = (A0+ Adipcc )χc +Ks

(9)

with Tr Adip = 0. From the bulk susceptibility it follows thatχa = χb∗ = χ⊥, which
reflects the axial symmetry of the hexagonal lattice. However, at the atomic level,χa may
be different fromχb∗ , as may be deduced from inspection of figure 1 by considering just
one of the triangles formed by the U1 or U2 ions. For later use we also write down the full
angular dependence ofK when the external field is rotated in thea–b∗ plane:

K(ϕ) = (A0+ Adipb∗b∗)χb∗ + ((Adipaa + A0)χa − (Adipb∗b∗ + A0)χb∗) cos2 ϕ

+ 1

2
A
dip

ab∗(χb∗ + χa) sin 2ϕ. (10)
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ϕ is the angle betweenHext and thea-axis. In the case of a diagonalAdip,K(ϕ) will assume
an extremum atϕ = 0; otherwise, the extremum will be shifted to some non-zeroϕ.

Rotating the field in thea–c plane(ϕ = 0), one derives instead

K(ϑ) = (A0+ Adipaa )χa + ((Adipcc + A0)χc − (Adipaa + A0)χa) cos2 ϑ

+ 1

2
Adipac (χa + χc) sin 2ϑ. (11)

ϑ is the angle betweenHext and thec-axis.
So far we have neglected macroscopic contributions to the frequency shift which arise

from the magnetization of the sample, namely the demagnetization fieldBdm and the Lorentz
field BL. Explicitly, we have

Bdm = −Nχ∗bHext (12)

BL = 4π

3
χ∗bHext (13)

whereN is the demagnetization factor (tensor) which depends on the shape of the sample and
χ∗b is now the magnetic bulk susceptibility per unit volume, i.e.χ∗b = (ρ/M)χb (emu cm−3).
In the present case the principal axes ofN agree with the crystallographic axes; i.e.N is
diagonal in the systema, b∗, c (see table 2).

The total relative frequency shift1ν/ν0 has to be corrected for these additional shifts
to arrive at the true Knight shift, i.e.

Ki = 1νi

ν0
− ρ

M

(
4π

3
−Nii

)
χi (i = a, b∗, c). (14)

The relevantNii for the samples used in this work are listed in table 2.

3.2. Experimental results

The transverse-field (TF)µSR signal [4] showed in general a splitting into four components.
In addition, a more or less intense background signal was seen fromµ+ stopping outside of
the sample. As an example, figure 2 shows the Fourier transform (power) of theµSR signal
taken at 80 K for sample No 3 in the GPS. The dominant peak arises from two overlapping

Figure 2. The Fourier power spectrum of the TFµSR signal (Hext = 6 kOe) taken at 80 K
with Hext applied in thea–b plane. The dominant peak consists of two components, as follows
from the actual fit of the originalµSR spectrum.
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Figure 3. The dependence of the precession frequenciesν1, ν2 andν3 on the orientation of the
field Hext applied in the basala–b plane at 80 K.ν4 is represented by the horizontal line.

components. (The background signal was negligibly small in this measurement.) Although
they cannot be resolved in the Fourier spectrum, they can be fitted in the time domain
by imposing constraints on the amplitudes—namely that three out of the four components
displayed the same signal amplitude. These three components (labelled No 1, No 2 and
No 3) showed a striking angular dependence of the precession frequencies when the external
field Hext was rotated in the basal plane, i.e. when the sample was rotated around thec-
axis (in this case the demagnetization factorN was constant; see table 2). The results are
displayed in figure 3. The solid lines are cos2 ϕ fits. As can be seen, the lines are displaced
from each other by 60◦. This is what one would expect, if three magnetically inequivalent
but crystallographically equivalentµ+-positions are assumed which can be transformed

Figure 4. The dependence of the Knight shift derived from precession component No 1 on the
orientation ofHext in the a–c plane at 30 K.
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into each other by rotations of 120◦ around thec-axis. The maximum frequency shift was
observed whenHext was parallel to the crystallographica-axis or equivalent directions.
From comparison with equation (10), it follows thatAdipab∗ must be zero or quite small.

When the external field was directed along thec-axis, the three frequency shifts
coalesced into one and assumed a minimum, as can be seen from figure 4 which displays
the angular dependence of the Knight shift of component No 1 in thea–c plane. Again,
from comparison with equation (11), it follows thatAdipac ' Adipb∗c ' 0.

These results already allow us to predict that the three sites involved are most likely to
be found in the U1- or U2-containing planes (z = 1/2, z = 0).

The fourth single component (labelled No 4) shows no angular dependence in the basal
plane. Some anisotropy with respect to thec-axis is not yet totally excluded, but if there is
any, it must be rather small. In any case the associatedµ+-position must be essentially a
magnetically (and of course crystallographically) unique position.

In order to actually determine the fullAdip tensor, the temperature dependences of the
Knight shifts were studied forHext ‖ a-axis, Hext ‖ b∗-axis andHext ‖ c-axis. Fig-

Figure 5. (a) The temperature dependence of the precession frequencyν1 for Hext ‖ a-axis
and forHext ‖ b∗-axis. Above 180 K the two frequencies start to approach each other, which
signals the onset ofµ+-diffusions among the sites I. (b) The temperature dependence of the
precession frequencyν4 (component No 4). The upturn ofν4 at 220 K signals the onset of
long-rangeµ+-diffusion involving sites I and II.
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ure 5(a) displays the temperature dependence of the uncorrected frequencies associated
with the maximum (Hext ‖ a-axis) and the minimum (Hext ‖ b∗-axis) in figure 3. We
find that the two frequencies start to approach each other above 180 K, and above 220 K
only one component remains. This behaviour reflects the onset ofµ+-diffusion (motional
averaging). The analysis of the data was therefore restricted to temperatures below 180 K,
except forHext ‖ c-axis in which case diffusion does not matter in view of the degeneracy
of the frequency shifts. Figure 5(b) shows the temperature dependence of the frequency of
component No 4.

Figure 6. The temperature dependence of the total asymmetries (signal amplitudes) of the site-I
and site-II signals.

The relative population of the site associated with components No 1, No 2, No 3
(henceforth labelled site I) and the site associated with component No 4 (henceforth labelled
site II) is temperature dependent. Figure 6 displays the temperature dependence of the sum
of the amplitudes of components No 1–No 3 and the amplitude of component No 4 measured
for sample No 3. The amplitudes are a direct measure of the relative populations. As can
be seen, close toTN the population of the two sites is nearly equal but the populationP(I)
of site I grows at the expense of the populationP(II) of site II. This feature is generally
seen for all three samples, but the ratioP(I)/P (II) may deviate in either direction from the
value quoted above, depending on the sample used. These discrepancies are not understood
at present.

Each precession component appears to relax exponentially. The relaxation rate of comp-
onent No 4 is the smallest and drops above 30 K to rates below 0.05µs−1. The relax-
ation rates of the other components assume a maximum for the maximum frequency shift
('0.6µs−1 at 25 K) but drop quickly with rising temperature, always staying below 0.2µs−1

above 50 K. These results will not be discussed further here.

3.3. Analysis of the Knight shift data

All of the measured frequency shifts were corrected for the demagnetization and Lorentz
contributions using the demagnetization factors listed in table 2 and the bulk susceptibility
from reference [3], which was measured for a sample cut from the same large crystal as the
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Table 3. A collection of fitted parameters of site-I components (No 1, No 2, No 3).

a-axis b∗-axis c-axis

AiiC (K) 0.622(37) −(1.34± 0.55)× 10−2 −0.407+0.110
−0.182

Aii (kG/µB ) 2.80± 0.17† −0.060± 0.025† −1.83+0.49†
−0.82

Aii (kG/µB ) 2.40± 0.14‡ −0.052± 0.021‡ −1.57+0.42‡
−0.70

K0
i (ppm) −475± 140 −272± 35 513+309

−227

θ ′i (K) −57± 3 + 13± 2 −164+37
−53

† Calculated withC = 1.241 emu K/mol U (peff = 3.15, averaged from reference [3]; see
table 1).
‡ Calculated withC = 1.447 emu K/mol U (peff = 3.40, assuming thatpeff (U3) = 0).

Table 4. A collection of fitted parameters of the site-II component (No 4).

a–b plane c-axis

AiiC (K) −(1.03± 0.55)× 10−2 −(1.05+0.33
−0.46)× 10−2

Aii (kG/µB ) −0.046± 0.025† −0.047+0.15†
−0.21

Ki (ppm) + 200± 50 + 300 fixed

θ ′i (K) 11.4± 2.4 26+12
−19

† Calculated withC = 1.241 emu K/mol U (peff = 3.15); the values will be reduced by∼17%
if C = 1.447 emu K/mol U (peff (U3) = 0) is used.

present samples No 1–No 3.
Inspection of the corrected Knight shifts as a function of temperature showed that they

followed a Curie–Weiss behaviour from 180 K down to∼30 K. Consequently they were
fitted using the function

Ki = K0
i + Aii

C

T +2′i
(15)

where

C = P 2
eff µ

2
B

3kB
is the Curie constant/U ion and

peff =
√
J (J + 1)gJ

is the effective moment (in units ofµB). The latter may be taken from table 1, or, if the
U3 ions are magnetically inactive, has to be increased by

√
(14/12) or 8%, respectively.

K0
i is a temperature-independent term which may be identified withKs (equation (9));

Aii = A0 + Adipii are the coupling constants defined in section 3.1 andθ ′i is an effective
Curie–Weiss temperature. The fitting parameters are collected in tables 3 and 4;θ ′i is also
given in table 1 for comparison. Figure 7 shows a Curie plot of(Ki(T ) − K0

i )
−1 versus

temperature for the site-I results.
The data for different samples, involving different demagnetization factors and different

external fields, resulted in coinciding parameter sets, proving the consistency of our analysis.
A most unexpected result is that the effective Curie–Weiss temperatures are quite

different from the values deduced from the bulk susceptibility (see table 1), even showing an



Magnetic properties of U14Au51 8069

Figure 7. Curie–Weiss plots of (Ki(T )−K0)
−1 versus temperature. Note the shifted positions of

the Curie–Weiss temperaturesθ ′i with respect toθ⊥ andθ‖ deduced from the bulk susceptibility.

anisotropy in the basal plane. Also unusual is the anisotropy of the temperature-independent
contributionKs . Note thatAcc is the least accurately determined coupling constant.

Table 5. Hyperfine coupling constants for site I.

a-axis b∗-axis c-axis

peff = 3.15 A
dip

ii (kG/µB ) 2.50+0.18
−0.28 −0.36+0.17

−0.29 −2.13+0.25
−0.41

A0 (kG/µB ) 0.30+0.17
−0.28

peff = 3.40 A
dip

ii (kG/µB ) 2.14+0.15
−0.25 −0.31+0.15

−0.24 −1.93+0.20
−0.33

(see table 3) A0 (kG/µB ) 0.26+0.15
−0.24

From theAii-values in tables 3 and 4 we can now deduce the dipolar coupling tensor
Adip and the contact coupling constantA0, making use of the additional constraint that
Tr Adip = 0. The values obtained pertaining to site I are listed in table 5. For site II, only
a contact coupling constant can be extracted:A0 = −0.040± 0.021 kG/µB , while any
non-zeroAdipii is restricted to|Adipii | . |A0|. Compared to the values for site I, allA0, Adipii
are extremely small, while|Ks | is of similar magnitude.
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3.4. Identification ofµ+-sites

The identification proceeds as follows: we first calculate the tensorAdip by performing
the appropriate lattice summation (equation (3)), scanning the crystal (i.e. thez = 0 and
z = 1/2 planes) in steps of 0.01a and 0.02b (using the crystal parameters of reference [3]).
We then diagonalizeAdip since the measuredAdip is in a diagonal form. Next we produce
contour plots of the diagonalizedAdipii and search for those contour lines which agree with
the measuredAdipii ± error bars. If thoseAdipaa -, Adipb∗b∗ - andAdipcc -lines cross simultaneously
at the same position, this position qualifies as a possibleµ+-site.

Figure 8. Calculated contour lines forAdipii = 0 (upper part) andAdipii = ±50 G/µB
(lower part) in thez = 1

2 plane. In the upper partpeff (U3) = peff (U1); in the lower part

peff (U3) = 0.08peff (U1). The black dots in the lower part indicate the points where theA
dip

ii

overlap within their error bars. The axesx′, y′, z′ are the principal axes of the tensorAdip and
vary as a function of position.

We first consider the site-II position. The smallness of the coupling constants implies
a position which is either far from the U ions or near a point where the dipole and contact
fields from the various U ions cancel each other. Assuming that the U3 ions are magnetically
inactive (peff (U3) = 0), calculations ofAdipii in the z = 0 andz = 1

2 planes (using the

crystal parameters of reference [3]) show generally that|Adipcc | > 0.2 kG/µB , which is
incompatible with the data. Also, inspection of the crystal shows that in between the



Magnetic properties of U14Au51 8071

z = 0 and z = 1
2 planes no reasonable interstitial site can be identified. The situation

is different if the U3 ions are allowed to show a magnetic response, i.e.peff (U3) 6= 0.
Assuming first thatpeff (U3) = peff (U1) = peff (U2), we calculate againAdipii -maps
in the z = 0 and z = 1

2 planes. The upper part of figure 8 displays the resulting

contour lines forAdipaa = A
dip

b∗b∗ = A
dip
cc = 0 kG/µB in the z = 1

2 plane. A similar plot
is obtained for thez = 0 plane. As can be seen, we now do indeed find lines with
A
dip

ii = 0 for all ii, but they do not cross at any position. On reducingpeff (U3), all
zero lines (except certainAdipb∗b∗ -lines) move towards the position (0 012) or equivalent
ones, starting to overlap forpeff (U3) . 0.1peff (U1,U2) and shrinking to the position
(0 0 1

2) for peff (U3) = 4.14× 10−2peff (U1,U2). The Adipii = 0 ± 50 G/µB contour
lines forpeff (U3) = 0.08peff (U1, 2) are displayed in the lower part of figure 8. A similar
behaviour is also found in thez = 0 plane, now involving the position (0 0 0). We conclude
that site II is located in the vicinity of position (0 0 0) or(0 0 1

2). However, inspection
of the atomic environment of position (0 0 0) reveals that the nearest-neighbour Au ions
(Au5), in thez = 0 plane, are at a distance of only 1.3Å. Moreover, there are twice as
many 6j -positions as there are Au5 ions and the Au5 ions are randomly distributed over
the 6j -sites, so on average each 6j -site has an occupation probability of only 50%. This
introduces a certain randomness in the atomic configuration around the (0 0 0) position. In
view of this, we believe that site II cannot be located near the (0 0 0) position. In contrast,
the interstitial volume at the position(0 0 1

2) is much larger: the distance to the nearest U3
ion amounts to 1.8̊A and the six nearest Au4 ions in thez = 1

2 plane are at a distance of
∼2.9 Å. Our final conclusion, therefore, is that site II is located in thez = 1

2 plane close
to the position(0 0 1

2), i.e. halfway between the pair of U3 ions forming together a nearly
non-magnetic configuration. As figure 8 demonstrates, the possibleµ+-sites, compatible
with the calculatedAdipii = 0, are again of threefold (sixfold) symmetry. BecauseA

dip

ii ' 0,
the sites are indistinguishable from each other.

The present analysis shows that the results on the site-II signal can only be explained if
one admits a non-zero magnetic response of the U3 ions, but with a rather reducedpeff (U3)
within the limits 4.13× 10−2 6 peff (U3)/peff (U1, 2) < 0.1.

Next we consider the location of site I. The fact thatAdipb∗c , A
dip
ac must be quite small

in view of figure 4 leads us to suspect that in factAdipb∗c = A
dip
ac ≡ 0. This situation is

generally found for thez = 0 and z = 1
2 planes, containing either the U2 or the U1

ions, respectively. Again we have calculated the spatial dependence of the diagonalized
Adip in the z = 0 and z = 1

2 planes, assuming from now on thatpeff (U3) = 0 and
peff (U1) = peff (U2) (admitting apeff (U3) . 0.1peff (U1, 2) has a negligible effect on
the following conclusions). The diagonalization allows us also to determine the angleα

between the principal axes (x ′, y ′) of Adip in the basal plane and the laboratory axes (x, y)
defined by the crystallographica- andb∗-axes (thez′- andc-axis will be parallel). Figures 9
and 10 display contour lines ofAdipii in the z = 1

2 andz = 0 planes respectively, for values
plus or minus the error bars taken from table 5, lower part. Also shown are contour lines
corresponding toα = 0◦, (i.e.Adipab∗ = 0; this applies to signal No 1). The contour lines for
α = ±120◦ (equivalent to∓60◦, associated with signals No 2 and 3) (not shown for clarity)
can be obtained by rotating the pattern by±120◦. Possibleµ+-sites are again those regions
in which theAdipaa -, Adipb∗b∗ -, A

dip
cc - andα = 0,±120◦ lines cross simultaneously. We find that

there are several sets of three symmetrically coordinated candidate sites in thez = 1
2 plane

(indicated by•; only the sites withα = 0◦ are marked; the symmetrically coordinated sites
with α = ±120◦ are not shown).
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Figure 9. Calculated contour lines for the principal-axis valuesAdip
x′x′ , A

dip

y′y′ , A
dip

z′z′ and (blue

line)Adipxy = 0 (corresponding toα = 0◦) in thez = 1
2 plane withAdip

i′i′ equal to the experimental
values plus or minus the error bars (table 3;peff (U3) = 0). To make the illustration clearer, the

area between theAdip
i′i′ ±1A

dip

i′i′ lines is coloured in part of the plot (red:Adipaa ; green:Adipb∗b∗ ;

grey: Adipcc ). Possibleµ+-sites are those positions where the (coloured) stripes, formed by the
corresponding contour lines plus theα = 0◦ line, all overlap. These sites are marked by•. If
we included also theα = ±120◦ contour lines (not shown for clarity), the number of possible
sites would triple.

Figure 10. Calculated contour lines in thez = 0 plane. See the caption of figure 9.
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Figure 11. The calculated diagonalizedAdip
x′x′ , A

dip

y′y′ andAdipcc along the line shown in the inset.
The positionr = 0 refers to the centre of the triangle. Also shown are dipolar fields calculated
according to section 4.2 (solid line). This line will be pushed up when the contact fieldBc is
added toBdip . The vertical lines indicated represent the measuredA

dip

ii and|B1| plus or minus
their error bars. The approximate centre of the overlapping ranges ofµ+-positions is indicated
by the arrow. Note the almost perfect consistency with the measured|B1|.

We rule out those sites which possess a fully asymmetric configuration of the nearest-
neighbour U1 ions and Au ions. This leaves us with only one possible set near the centre of
an even-sided U1 triangle. An individual site of this set is located on the connecting straight
line between a U1 ion and the centre of the triangle. Note that the other site indicated, on
the opposite side of the centre, involves an asymmetric neighbour configuration.

Examining figure 10, we do not find any position in thez = 0 plane at which the
allowed ranges of theAdipi ′i ′ andα cross simultaneously, ruling out aµ+-site in thez = 0
plane.

The coordinates of one of the three site-I candidates are read off figure 11, which
shows the dependence of the diagonalizedA

dip

x ′x ′ , A
dip

y ′y ′ , A
dip
zz on the position along the line

between the U1 atom No 1 (see figure 1) and the centre of the U1 triangle at( 2
3

1
3

1
2). Also

indicated are the experimental results and their error bars. The experimental values cross
the calculated values approximately at the position (0.63(1) 0.3319(5) 0.5). The other sites
are obtained by proper symmetry operations.

Figure 12 shows the atomic configuration around this site. The nearest neighbours out
of the z = 1

2 plane are the gold ions Au6 at the positions (0.666, 0.333, 0.500± 0.191).
The distances are indicated in the figure. The nearest neighbours perpendicular to the
U1–Au6–Au6 plane are four gold ions Au3 in a rectangular planar array.

The three site-I positions are quite close (distance≈ 0.79 Å). Therefore, the onset
of µ+-diffusion at around 180 K may initially only reflect a local hopping between these
three sites, while long-range diffusion also involving site II may become effective above
210 K.
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Figure 12. The nearest-neighbour configuration consisting of three U1 atoms, two Au6 atoms
and six Au3 atoms around site I. As indicated, there are three crystallographically equivalent
positions.

Figure 13. The ZFµSR signal at 19 K for the magnetically ordered state of U14Au51. The
solid line represents a fit of equation (16) to the data. The initial polarizationPµ(0) was roughly
parallel to thec-axis.
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Figure 14. The temperature dependences of the spontaneous frequenciesν1 andν2. The solid
lines represent fits of equation (18) to the data.

4. Measurements for the magnetically ordered state

4.1. Results

A typical ZF µSR signal belowTN is shown in figure 13. The time evolution of the
µ+-polarization contains three components, and is best fitted by the function

P(t) = a1eλ1t cosω1t + a2e−λ2t cosω2t + a3e−λ3t . (16)

Other assumptions regarding the form ofP(t) proved to be less satisfactory. Two
components thus reflect theµ+ Larmor precession in two different spontaneous internal
fields Bi = ωi/γµ as expected in the presence of two different types ofµ+-site. The

Table 6. A list of the fitting values (equation (17)) for describingBi(T ) and the theoretical
predictions. (MF= mean field.)

Signal ν0 (MHz) B0 (kG) δ β TN (K)

Site II 4.41± 0.05 0.325± 0.040 5.23+1.97
−1.40 0.31+0.16

−0.08 21.22+0.27
−0.12

Site I 28.50± 0.36 2.102± 0.027 3.13± 0.40 0.34± 0.03 21.25± 0.06

Ins (110) (reference [3]) 4.2± 0.1 0.398± 0.014 21.64± 0.04

MF 0.5

Heisenberg
D = 3 0.38

Ising
D = 2 (reference [8]) 0.125
D = 3 0.312

χ (reference [3]) 21.3(2) (c-axis)
22.0(2) (b-axis)
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Figure 15. The temperature dependences of the relaxation ratesλ1 andλ2.

temperature dependences of the fitted frequencies are displayed in figure 14. The low-
temperature limits ofν1 = 29.5 MHz andν2 = 4.40 MHz correspond to internal fields of
2.10 kG and 0.325 kG (see also table 6). The temperature dependences ofλ1 andλ2 are
displayed in figure 15. We notice that the ratioλ1/λ2 is close toν1/ν2 ' 6.7 at 4.5 K, but
approaches 1 forT → TN , in contrast to the behaviour ofν1/ν2 (see the next section).λ3

appears to be temperature independent, and has a value of∼0.3 µs−1.

Figure 16. The temperature dependences of the amplitudes (asymmetries)a1, a2 and a3

(equation (16)). The orientation ofPµ(0) is like that in figure 14.

The temperature dependences of the asymmetries or amplitudesai are displayed in
figure 16. The non-oscillatinga3 is rather small (∼10% of the total asymmetry) and is
moreover temperature independent. The suma1 + a2 + a3 adds up to the possible max-
imum value, which is given by the projection of the initialµ+-polarizationPµ(0) onto the
direction of positron observation, i.e. there is no missing polarization. Hence it appears
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that almost the fullPµ(0) is precessing. This implies that the internal fieldsBi ‘sensed’
by theµ+ are oriented nearly perpendicular toPµ(0), i.e. that theµ+-spin precession is
essentially of planar geometry. Since the experimental arrangement was such thatPµ(0)
was roughly directed perpendicular to the crystallinea–b plane, it follows that theBi are
likewise confined to thea–b plane. We will see that this is precisely what would be expected
on the basis of theµ+-site determinations and the AF structure of reference [3]. The small
non-oscillating componenta3 may indicate a certain misalignment(∼20◦), so in factPµ(0)
may not be exactly perpendicular to theBi . It is also possible that this component arises
from a small fraction of the sample volume which has remained paramagnetic belowTN .

The amplitudesa1 anda2 reveal a certain temperature dependence which seems to imply
that even belowTN the relative population of the two sites is not constant (see the discussion
below).

Figure 17. Calculated contour lines for the dipolar field for the ordered state in thez = 1
2 plane.

The lines refer toB1 = 2100± 100 G andB2 = 325± 50 G. The sites I are indicated as black
dots. The site-II candidates from figure 9 fall between theB2 contour lines.

4.2. Antiferromagnetic structure, spontaneous fieldsBi andµ+-sites

Since U14Au51 orders antiferromagnetically,Bi does not contain contributions from the
demagnetization and the Lorentz fields. The only contributions are the contact hyperfine
field Bc and the sum of dipolar fieldsBdip from the ordered U 4f moments. While the
dipolar fields are only determined by the antiferromagnetic structure, the contact hyperfine
field is a muon-specific quantity which in the absence of theµ+ would be quite different.
There are no theories which would allow us to predict this quantity reliably for the AF
state. However, we may estimateBc from the contact coupling constantA0, measured for
the paramagnetic phase.A0 is essentially only arising from the three nearest U1 neighbours
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(e.g. atoms 1, 2 and 3 in figure 1) and is an average over their contributions, i.e.

A0 = (A(1)0 + A(2)0 + A(3)0 )/3.

Assuming thatA(i)0 ∝ 1/r3
i , where ri is the distance fromµ+ to the U atom i, and

calculatingr1/r2 = 0.73 for site I (r3 = r2), we estimate thatA(1)0 = 0.44 kG/µB and
A
(2)
0 = A(3)0 = 0.17 kG/µB . Then

Bc ' A(1)0 µ1+ A(2)0 µ2+ A(3)0 µ3. (17)

With |µ| = 2.28µB , it follows thatBc ' 0.6µ1/|µ1| kG (since theµ1 are in thea–b plane,
so isBc). Bdip can be calculated in the same way as the dipolar coupling constantsA

dip

ii ,
taking the actual antiferromagnetic structure into account and using the values of the ordered
moments for the U1 and U2 ions as given in reference [3]. (The lattice sum is calculated
over a sphere with a radius of 50̊A ' 4a.) These calculations show that in thez = 0 and
z = 1/2 planes thez-component ofBdip is generally zero, as expected. Figure 17 displays
contour lines in thez = 1/2 plane forBdip = 325± 50 G andBdip = 2100± 100 G,
corresponding to the measured fieldsBi . As can be seen, the latter contour lines run very
close to the three sites identified as theµ+-sites I from the Knight shift analysis. Even better
agreement is obtained when the estimatedBc is taken into account (see also figure 11). No
other crossings are seen, and the unsymmetrical positions which are allowed according to
figure 9 can now definitely be excluded. Note how closely the two lines for 2100± 100 G
parallel each other, indicating steep gradients perpendicular to the lines. Any small lattice
irregularities are thus expected to produce a relatively wide distribution of fields, explaining
the rather large relaxation rates of theB1 = 2.10 kG component. For completeness, we
repeated the same procedure for thez = 0 plane. No position was found which was
compatible with all of the data.

As figure 17 shows, a dipolar field of the order of 300 G is realized close to the position
(0 0 1

2). This is consistent with the previous conclusion that site II must be in the vicinity
of position(0 0 1

2). No further refinement is attempted in view of the uncertainties involved
and the neglect of a possible small contact-field contribution.

Basically, the overall consistency of the present analysis confirms the complex
antiferromagnetic structure and the moment values reported in reference [3]. The question is
how wellµSR data could distinguish between the structures suggested in reference [2] and
reference [3]. Adopting the structure of reference [2] with the ordered moments aligned
along the crystallographicc-axis, calculation would predict that the dipolar fields in the
z = 0 andz = 1/2 planes would only show a non-zero component along this axis, in clear
contradiction to the present findings. But also the field map comes out quite differently, as
shown in figure 18 for thez = 1/2 plane, and no site consistent with the measuredA

dip

ii

can be identified.

4.3. Temperature dependence of the spontaneousBi

The temperature dependence of the data shown in figure 14 could be fitted perfectly by the
expression

νi(T ) = γµBi(T ) = ν0,i

(
1−

(
T

TN

)δ)β
. (18)

The fits are represented by the solid lines in figure 14. The fitting parameters are listed
in table 6 together with theoretical predictions forβ [8]. As can be seen, the measuredβ
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Figure 18. Calculated contour lines for the dipolar field assuming the antiferromagnetic structure
proposed in reference [2]. The lines refer again toB1 = 2100± 100 G andB2 = 325± 50 G.
The sites I are marked by solid circles.

are in good agreement with the predictions for a three-dimensional Heisenberg or a three-
dimensional Ising magnet. The limited accuracy, however, prevents us from identifying the
actual universality class. The parameterδ is introduced phenomenologically and reflects
magnon excitations. In a cubic system,δ is predicted to be 2 [9]. To our knowledge, no
predictions are available for a hexagonal system with different magnetic sublattices (U1,
U2). The fitted parameters allow us to conclude that the temperature dependencies of the
Bi(T ) are essentially equal. Furthermore, theBi(T ) may be compared with the intensities
of the magnetic Bragg peaks,Ins(T ). One expects

Bi(t) ∝
√
Ins(T ) ∝ µord(T ).

We have fitted
√
Ins(T ) also with equation (18), and the fitted parameters for the 110

reflection are listed in table 6 as well. In this case,β seems to be compatible only with a
3D Heisenberg model.

5. General discussion and conclusions

The remarkable overall consistency of the analysis of our results allowed us (i) to determine
the µ+-sites, (ii) to confirm the non-collinear antiferromagnetic structure belowTN and
(iii) to conclude that the magnetic response of the U3 ions in the paramagnetic state is
much reduced but not zero. The analysis produced the unexpected result that the effective
Curie–Weiss temperaturesθ ′i of the U1 ions next to theµ+ are significantly different from the
corresponding bulk susceptibility values (see table 1). If we had not admitted modifiedθ ′i in
the analysis, no consistency would have been obtained. Particularly striking is the fact that
also, in the basal plane,θ ′i turns out to be anisotropic. The question that immediately comes
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to one’s mind is of course that of how far these observations are muon induced. As regards
the basal-plane anisotropy ofθ ′i , this may be an intrinsic feature, which is not necessarily in
contradiction with the isotropy of the bulk susceptibility in the basal plane. The latter can
be calculated by summing over atomic susceptibilities, whose sum by symmetry has to be
isotropic in the basal plane. Indeed, just looking at one of the U1 triangles, it appears quite
reasonable that it will make a difference whether the external field is applied along one of
the edges of this even-sided triangle or perpendicular to it. The average susceptibility in
the basal plane would be given by

χa,b = 1

3
(χa + 2χb∗) = C

3

(
1

T − θ ′a
+ 2

T − θ ′b∗

)
(19)

which for T > 0 (θ ′i < 0) can be approximated by

χa,b ∼ C

T − 1
3(θa + 2θ ′b∗)

(20)

and, with the values in table 1, allows us to calculate some average Curie–Weiss temperature
in the basal plane:θ ′ab ' −10 K. The deviation of this average value and ofθ ′c from the
bulk values could still be of intrinsic origin, because the Curie–Weiss temperatures of the
U2 ions in thez = 0 plane may also be different, and again the bulk susceptibility is an
average over all U ions. If we accept this idea, we calculate for the U2 ion the following
approximate Curie–Weiss temperatures:θab ' −132 K andθc ' −58 K. These values
are not unreasonable in view of the observation in reference [3] that the major part of the
c-axis susceptibility below and just aboveTN is due to the U2 ions. In fact, with the
above effective values forθ ′i , we calculate at 22 K and for an applied field of 4.6 T along
the c-axis the following induced moments at the U1 and U2 ions:µ(U1) = 0.06 µB and
µ(U2) = 0.15µB , which are to be compared with measured values [3] of 0.05 µB and
0.10 µB , respectively. For the basal-plane susceptibility, the situation should be reversed.
It would be interesting to check this conjecture by performing further polarized neutron
scattering investigations.

We cannot exclude, of course, the possibility that some part of the deviation ofθ ′i from
the bulk values is a muon-induced effect. Theµ+ will induce some local lattice relaxation,
as observed for protons in metals, changing thereby local distances, and, due to the build
up of a screening cloud of conduction electrons around theµ+, also a certain redistribution
of charge has to be expected. Both effects may modify the RKKY-mediated exchange
coupling among the nearest U neighbours of theµ+, without, however, changing the Néel
temperature.

The effective Curie–Weiss temperature derived from signal No 4, involving site II, is
even more difficult to explain. The near-halfway position of theµ+ between two nearest
U3 neighbours implies that one monitors to a certain extent the weak magnetic response of
this largely non-magnetic pair. It will be interesting to perform more precise measurements
of signal No 4, which we hope to be able to do in the near future.

At present we have no idea how to interpret the other interesting parameter determined
by the analysis, namely the temperature-independent contribution to theµ+ Knight shift,K0

i

(see table 3). In particular, its anisotropy is a very unusual property. Its values are reasonable
and of the same order of magnitude as for other intermetallic systems. Most probably it
arises from the Pauli paramagnetism of the conduction electrons screening theµ+-charge,
but the appearance of a negative sign indicates that p-type and/or d-type electrons are
possibly also involved, as is known from other metallic systems consisting of, or containing,
transition and/or 4f and 5f elements [10].
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Another puzzling observation concerns the behaviour of the relaxation ratesλ1 andλ2

for the ordered state. While the low-temperature ratioλ1/λ2 ≈ ω1/ω2 suggests that theλi
reflect the width1Bi of the static-field distribution around each average fieldBi , scaling
with Bi (1Bi/Bi = λi/γµBi ' 0.28 at lowT is not untypical for intermetallic compounds
and reflects the crystal quality and perfection of the ordered magnetic structure), the slight
increase ofλ2 and the essentially linear decrease ofλ1 with rising temperature up to 19 K
(at and above 19 K,λ1 ' λ2) is unexpected and seemingly contradictory. It raises the
suspicion that theµ+ at site II are somehow affected by the two nearest-neighbour U3
ions. Perhaps the U3-ion pair is the source of strong fluctuating fields which induceµ+

spin–lattice relaxation at site II. On the other hand, aboveTN , signal No 4 shows the slowest
relaxation. Whether a dynamic origin ofλ2 is indeed indicated will have to be studied by
longitudinal-field-decoupling experiments.

Yet another unusual result concerns the occupation probabilities of the two sites I and
II as reflected in the respective signal amplitudes. These probabilities are related to the
depth of the potential ‘felt’ by theµ+ at the respective sites. The depth will depend on the
local geometry and distances. According to figure 17, far belowTN moreµ+ are found at
site I than at site II. With rising temperature, the population of site II grows at the expense
of that of site I and dominates nearTN . In contrast, figure 6 shows that the population
of site II decreases aboveTN and site I becomes the dominantly occupied site up to about
210 K, before the onset of diffusion obscures the picture. It thus seems that the occupation
probabilities are affected by the magnetic phase transition and the occupation of site II
approaches a maximum near or atTN . Since the lattice parameters and also the atomic
positions depend only very little on temperature [2], they cannot be responsible for the
observed temperature dependence. Usually the self-trapped state of theµ+ is viewed as a
small polaron. The energy gained by the small lattice expansion induced around theµ+

depends on certain elastic stiffness constantsCij [11]. Therefore, we conjecture that the
occupation probabilities could depend on the temperature dependence of the elastic stiffness
tensor. Unfortunately, nothing is known about the elastic properties of U14Au51.

In summary, the present study has demonstrated thatµSR spectroscopy has the potential
to also investigate complicated antiferromagnetic structures, provided that theµ+-site can be
determined as well. In particular, different magnetic structures (such as the ones proposed
in references [2] and [3]) can clearly be distinguished by theµSR technique. We stress that,
whenever possible, a magnetic structure determination should only be relied upon if neutron
scattering andµSR investigations yield consistent results. There are several examples for
which the magnetic structure deduced from neutron scattering data is severely at odds with
µSR results (e.g. CeB6 [12, 13], CeTSn (T= Pd, Pt) [14, 15] and HoBa2Cu3O7 [16, 17]). In
view of the present experience, it is suggested that one should reconsider the analysis of the
neutron data for the above-mentioned and other compounds. A new feature, not envisioned
before, is the observation that, for the paramagnetic state, the individual magnetic responses
of magnetic ions at crystallographically inequivalent sites can be distinguished and more
or less be determined quantitatively. An obstacle to a straightforward determination is the
possibility that the presence of theµ+ may induce modifications in the local susceptibility.
Such modifications are known to exist and can quantitatively be accounted for in the case
in which the low-temperature behaviour of the magnetic susceptibility is governed by the
crystalline-electric-field splitting of the electronic ground state [5]. The possibility, as
discussed above, that local Curie–Weiss temperatures may also be modified has not been
demonstrated beyond doubt so far. Progress may be achieved by studying systems in which
only one type of magnetic ion at a unique crystallographic site is present and where CEF
effects can be ignored.
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